CSE 451: Operating Systems
Winter 2024

Module 17
File Systems

Gary Kimura



High Level View

Application Program

I/O (programming interface)

|/O (device interface)

HW Devices

Slow — Fast

Read/Write — Read only — Write only
Byte or block I/0

Polling — Interrupt

DMA

1/O (File Systems)
block I/O
LBN (Logical Block Number)

HDD
SSD



Where File Systems Fit In

* The File System interacts with storage by reading/writing
blocks (sectors) on a per volume or single disk basis.

* A computer can have multiple volumes each formatted with a
different file system. For example. C: might be FAT and D:
might be NTFS

* Any interaction between C: and D: is typically above the level
of the file system.



Main Points

 Programming Interface

* Naming. What the typical programmer sees are Files
and Directories

* Basic operations
* On-disk Structure

* First general design issues and then a look at
Microsoft’s FAT file system, Unix, and NTFS.

* Journaling and Recovery



File System mission

* The concept of a file system is simple
* the implementation of the abstraction for secondary storage
e abstraction = files
* logical organization of files into directories
e the directory hierarchy
* sharing of data between processes, people and machines
* access control, consistency, ...

* The discussion on file systems often center around two
concepts
* Thereis the on-disk structure (i.e., how is the data persistently stored
on secondary storage)
* There is the software component that manages the storage and

communicates with the user to store and retrieve data (hopefully
without any loss of information)



Files

» Afileis a collection of data with some properties
* contents, size, owner, last read/write time, protection ...
* Files may also have types
* Some understood by file system
e device, directory, symbolic link
* Some understood by other parts of OS or by runtime libraries
* executable, dll, source code, object code, text file, .
. Type can be encoded in the file’s name or contents
Windows encodes type in name (and contents)
e .com, .exe, .bat, .dll, .jpg, .mov, .mp3, ...
* Old Mac OS stored the name of the creating program along with the
file
* Unix does both as well
* in content via magic numbers or initial characters (e.g., #!)



Programming Interface

The usual APIs plus maybe a few surprises
 Open, close, read, write, ...

Files and Directories, the object we play with
Finding and Enumerating entries in a directory

Watching for changes

How do we delete a file?

Renaming or moving files

Sequential access versus random access. Who remembers the
last access point?

Shared opens and files locks



Unix

* create(name)

* open(name, mode)
* read(fd, buf, len)

« write(fd, buf, len)

» sync(fd)

* seek(fd, pos)

» close(fd)

* unlink(name)

* rename(old, new)

Basic operations

Windows

* CreateFile(name, CREATE)
* CreateFile(name, OPEN)

* ReadFile(handle, ...)

» WriteFile(handle, ...)

* FlushFileBuffers(handle, ...)
 SetFilePointer(handle, ...)
 CloseHandle(handle, ...)

* DeleteFile(name)

» CopyFile(name)

* MoveFile(name)



File access methods

* Some file systems provide different access methods that

specify ways the application will access data

e sequential access
* read bytes one at a time, in order

e direct access
* random access given a block/byte #

* record access
* file is array of fixed- or variable-sized records

* indexed access
* FS contains an index to a particular field of each record in a file
e apps can find a file based on value in that record (similar to DB)

 Why do we care about distinguishing sequential from direct

access?
* what might the File System do differently in these cases?



Directories

* Directories provide:
* away for users to organize their files
e aconvenient file name space for both user and File System

* Most file systems support multi-level directories
* naming hierarchies (c:\, c:\DocumentsAndSettings,
c:\DocumentsAndSettings\User, ...)

 Most file systems support the notion of current directory

e absolute names: fully-qualified starting from root of File System
* C:\> cd c:\Windows\System32

* relative names: specified with respect to current directory
e C:\> c:\Windows\System32 (absolute)
e C:\Windows\System32> cd Drivers
. (relative, equivalent to cd c: \Windows\System32\Drivers)



Directory internals

* Adirectory is typically just a file that happens to contain

special metadata
» directory = list of (name of file, file attributes)
e attributes include such things as:
* size, protection, location on disk, creation time, access time, ...
* the directory list can be unordered (effectively random)
« when you type “Is” or “dir fon” , the command sorts the results
for you.
* some file systems organize the directory file as a BTree, giving a
“natural” ordering
* What case to use for sort?
* What about international issues?



Back to some of the more unexpected functions

Finding and Enumerating entries in a directory
Watching for changes
How do we delete a file?

Renaming or moving files. What if someone else has the file
open?

Shared opens and files locks

Tunnelling, version control and files attributes



A deeper look into File Systems

e Design Constraints and options
* On-Disk structure



File System Design Constraints

* For small files:
— Small blocks for storage efficiency

— Files used together should be stored together (is this a holdover from
HDD?)

* For large files:

— Contiguous allocation for sequential access (another holdover?)

— Efficient lookup for random access

 May not know at file creation

— Whether file will become small or large



File System Design

* Data structures

— Directories: file name -> file metadata

 Store directories as files
— File metadata: how to find file data blocks
— Free map: list of free disk blocks
* How do we organize these data structures?

— HDD have non-uniform performance that differs from SSD



Desigh Challenges

Where to store the file’s data?

— Most often within a block(s) aka cluster(s)

— Disk is divided into equal sized blocks, numbered from 0 to N.
Index structure

— How do we locate the blocks of a file? Using block numbers
Index granularity

— What block size do we use? Often a multiple of the disk sector size
Free space

— How do we find unused blocks on disk? Often a bitmap, but other options are
available

Locality

— How do we preserve spatial locality? An HDD issue, fragmentation is tied into
this.

Reliability
— What if machine crashes in middle of a file system op?



File System

Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) (dynamic)
granularity block* block* extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality defragmentation Block groups Extents
+reserve Best fit
defrag
space

* Really a collection of one or more of logical blocks, commonly referred to as a cluster.




Microsoft’s File Allocation Table (FAT)

Introduced in DOS in the early 1980’s
Linked list index structure

 Simple, easy to implement

e Still widely used (e.g., thumb drives)
File table:

* Linear map of all blocks on disk
 Eachfile a linked list of blocks

Allocation granularity (cluster size)

FAT



FAT12 FATIE FATaZ2

Legacy FAT

-W'El.l".. W Srral| Bk hrpw Largs 1o vary largs

AT S k. de.

» 1977 Bill Gates and Marc McDonald | |

. Ffﬂpp‘f hased ' =4 (¥l =44, 538 | =20 A1, 450
EAT 12 SIIBEKE | IKBOIIKE | SKE 1032 KE

» 1980 WIISI9B | 20471232008 i -2
FAT 16 (14 ME) (2 G| 2 Ta)

» 1984 with release of PC/AT & MS DOS 3
FAT 16B

» 1987 Compaq DOS 3.31
FAT 16X

« 1995 PC DOS 7.0/Win 95 — LBA Addressing
FAT 32

« 1996 Windows 95 O5R2, 98, ME, MS DOS 7.1 — CHS Addressing
FAT 32X
« LBA Addressing

HTCIA 2014 Conf - Aug 26, 2014



FAT disk layout

* Reserved Area (Boot sector and FAT)
* Root Directory Area

* Data Region

Dirents: contain: Filename, Attributes, Times (creation, last access, write),
First cluster of file, Filesize, and a few more things

FAT



FAT On-disk structure

FAT File System Structure

FAT32 File System Structure



—
oOwco~IONUNT AW —O

1L || e

MFT

Data Blocks

FAT

file 9 block 3

lock 0
9 1

e 9 block 2

e 12 block 0

e 12 block 1

lock 4

FAT



Originally only had
8.3 names

Later extended to
Long Filenames
with backwards

compatibility

(like coughing up
a hairball

FAT Dirent
8.3 and long filename

[ili] 0 02 03 04 05 06 o7 08 09 10 11 12 13 14 15
0x00 MName Extension Artr Reserved Create Time
Last Last
Created Starting Last Written : Starting Sy
e Date Acg;stzeci Cluster Hi Time W[;';t: # Cluster Low it
2nd long entry
(and last)
- T T T T )
oxd2|  w f o |oxor |oxoo|heK|
sum
s 1 1 . 1 . 1 1
0x0000 OxFFFF OxFFFF 0xFFFF OxFFFF 00000 OxFFFF OxFFFF
r ! T T 1 T 4 T T
check
0x01 T e q 0x0F | 0x00 sum u
i c 3 b 0x0000 r 0
: L) = L] L] = L] % T L L
T H E Q U | ~ 1 F 0 X |0x20| NT Create Time
Last Access Last Modified |Last Modified | _, &
Create Date Date 0x0000 Time Date First Cluster File Size
Short entry

—1st long entry




FAT

e Evolution:
* Floppy disk and 12-bit FAT
e Hard drives and 16-bit FAT with subdirectories
e Larger drives and 32-bit FAT

* Pros:
— Easy to find free block

— Easy to append to a file
— Easy to delete a file

* Cons:
— Small file access is slow
— Random access is very slow
— Fragmentation

 File blocks for a given file may be scattered
* Files in the same directory may be scattered

* Problem becomes worse as disk is used

FAT



The original Unix file system

Dennis Ritchie and Ken Thompson, Bell Labs, 1969

“UNIX rose from the ashes of a multi-organizational effort in

the early 1960s to develop a dependable timesharing

operating system” — Multics

Designed for a “workgroup” sharing a single system

Did its job exceedingly well

e Although it has been stretched in many directions and

made ugly in the process

A wonderful study in engineering tradeoffs

Unix



All disks are divided into five parts ...

Boot block
e can boot the system by loading from this block
Superblock
* specifies boundaries of next 3 areas, and contains head of
freelists of inodes and file blocks
i-node area
e contains descriptors (i-nodes) for each file on the disk; all
i-nodes are the same size; head of freelist is in the
superblock
File contents area
* fixed-size blocks; head of freelist is in the superblock
Swap area
* holds processes that have been swapped out of memory

Unix



So ...

* You can attach a disk to a dead system ...
* Bootitup..
* Find, create, and modify files ...
* because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are
* superblock also contains i-node number of root directory

Unix



The flat (i-node) file system

Each file is known by a number, which is the number of the
i-node

e seriously—-0,1, 2, 3, etc.!

« why is it called “flat”?

Files are created empty, and grow when extended through

writes

Unix



The tree (directory, hierarchical) file system

* Adirectory is a flat file of fixed-size entries
* Each entry consists of an i-node number and a file name

I-node number File name
152
18 .
216 my_file
4 another _file
93 oh_my_god
144 a_directory

* |t's as simple as that!

Unix



The “block list” portion of the i-node (Unix Version 7)

* Points to blocks in the file contents area
 Must be able to represent very small and very large files. How?
 Each inode contains 13 block pointers
* first 10 are “direct pointers” (pointers to 512B blocks of file
data)
* then, single, double, and triple indirect pointers

1 _’//
/VE‘

\
]
\4 Lo

10 e

12 =~ //

/




Protection

Objects: individual files
Principals: owner/groups/everyone
Actions: read/write/execute

This is pretty simple and rigid, but it has proven to be about
what we can handle!

Unix



File system consistency

Both i-nodes and file blocks are cached in memory

The “sync” command forces memory-resident disk information
to be written to disk

e system does a sync every few seconds
A crash or power failure between sync’s can leave an
inconsistent disk
You could reduce the frequency of problems by reducing

caching or via write-through, but performance would suffer
big-time

Unix



Consistency of the Flat file system

* Is each block accounted for?
* Belongs to precisely one file or is on free list
 What to do if in multiple files?
 Mark-and-sweep garbage collection of disk space
e Start with bitmap (one bit per block) of zeros
* For every inode, walk allocation tree setting bits
 Walk free list setting bits
* Bits that are one along the way?
e Bits that are zero at the end?

Unix



Consistency of the directory structure

Verify that directories form a tree
Start with vector of counters, one per inode, set to zero

Perform tree walk of directories, adjusting counters on every
name reference

At end, counters must equal link count
 What do you do when they don’t?

Unix



Journaling File Systems

e Became popular ~2002, but date to early 80’ s
 There are several options that differ in their details
* Ntfs (Windows), Ext3 (Linux), ReiserFS (Linux), XFS (lIrix), JFS
(Solaris)
* Basicidea
 update metadata, or all data, transactionally
* “all or nothing ”
* Failure atomicity
e if acrash occurs, you may lose a bit of work, but the disk will
be in a consistent state
 more precisely, you will be able to quickly get it to a
consistent state by using the transaction log/journal —
rather than scanning every disk block and checking sanity

conditions
Journaling File Systems



Why are journaling file systems so popular?

In any file system buffering is necessary for performance
But suppose a crash occurs during a file creation:
* Allocate a free inode
* Point directory entry at the new inode
In general, after a crash the disk data structures may be in an
iInconsistent state
* metadata updated but data not
e data updated but metadata not
e either or both partially updated
fsck (i-check, d-check) are very slow
 must touch every block
e worse as disks get larger!

Journaling File Systems



Where is the Data?

In the file systems we have seen already, the data is in two
places:
* Ondisk
* Inin-memory caches
The caches are crucial to performance, but also the source of
the potential “corruption on crash” problem
The basic idea of the solution:
e Always leave “home copy’ of data in a consistent state
 Make updates persistent by writing them to a sequential
(chronological) journal partition/file
e At vyour leisure, push the updates (in order) to the home
copies and reclaim the journal space
* Or, make sure log is written before updates

Journaling File Systems



 Undo/Redo log

* Log: an append-only file containing log records
e <startt>
e transaction t has begun
e <t,Xx,v>
* transaction t has updated block x and its new value is v
* Can log block “diffs” instead of full blocks
e Can log operations instead of data (operations must
be idempotent and undoable)
e <commit t>
* transaction t has committed — updates will survive a
crash
 Committing involves writing the records — the home data
needn’t be updated at this time

Journaling File Systems



If @ crash occurs

 Open the log and parse
e <start><commit>=>committed transactions
e <start>no <commit>=>uncommitted transactions
 Redo committed transactions
* Re-execute updates from all committed transactions
* Aside: note that update (write) is idempotent: can be done
any positive number of times with the same result.
* Undo uncommitted transactions
* Undo updates from all uncommitted transactions
* Write “compensating log records” to avoid work in case
we crash during the undo phase

Journaling File Systems



Managing the Log Space

* Acleaner thread walks the log in order, updating the home
locations (on disk, not the cache!) of updates in each
transaction

* Note that idempotence is important here — may crash
while cleaning is going on

 Once a transaction has been reflected to the home blocks, it
can be deleted from the log

Journaling File Systems



Impact on performance

The log is a big contiguous write
» very efficient, but it IS another |/O
And you do fewer scattered synchronous writes
* very costly in terms of performance
So journaling file systems can actually improve performance
(but not in a busy system!)
As well as making recovery very efficient

Journaling File Systems



NTFS

Developed for Windows NT in the early 1990’s
Master File Table

— Flexible 1KB storage for metadata and data

Extents
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)

— File create can provide hint as to size of file
Journalling for reliability

A basic underlying design principle: Everything on the disk is
represented as a file and accessible through the usual file
operations (read, write, etc.)

NTFS



NTFS disk layout

NTFS



NTFS Small File

Master File Table

- MFT Record (small file)

Std. Info. | File Name Data (resident) (free)

NTFS



NTFS Medium-Sized File

MFT

MFT Record

Wi

KRl g

| st info. | File Name

Data (nonresident)

........................................

NTFS

.............

BNy weg




MFT

NTFS Indirect Block

NTFS

MFT Record
| (part 1)  i—, ) |
Std. Info. Attr_list [Flle Name Data (nonresident) I
ez
Z| :|e
- o =
o B
3l L
MFT Record
_{Pﬂﬂ 2)
Std. Info. Data (nonresident) {fraa) |
g
= i =
AR :
=l :|=
I i



MFT

MFT Record
(small file)

MFT Recaord
(normal fike)

~|stme| - | Data maneesigens | I

| st inte. | Attrase [

1571

(bigfragmented file)

nm inareesident) |

J]“D

T 1 i Data inrvesen |

TOf @

[ Data Insreesdent) [ l

MFT

MFT Record
(huge/badly-fragmented file)

[ | S ints. |

.uu Iesl jmomrasigent)

|

....................

Data (narresident)

UI]

Data (nanresident)

|

NTFS

IR
Data (narvesident) | |
o ©

‘I:] Extent mih part of alfrBute list

Data Insrvesadent)

|

20

3

H
.H
i

H

Dala nsre esdent)

|

il

T



SMFT
SMFTMirr
SLogFile
SVolume
SAttrDef

. (root directory)
SBitmap
SBoot
SBadClus
SSecure
SUpCase

First few MFT Records

NTFS



Directories Are Files

music 320
work 219
foo.txt B71

NTFS



Recursive Filename Lookup

File2 | bin 737
| usr 824
nome 1568~

*Flle 158 | muke 682
“Thome” | ada 818
tom B30~

~+Flle 830 | music 320
“Thomeftom” | work 218
foo.txt 871

.'""'FIIE 871 | e aui

-

“ThomeftomMoo tit™ | bros fos

Jwped

vwer the

ey dop

NTFS




Directory Layout

e Directory stored as a file

* Linear search to find filename (small directories)

Mame

Fie Namber

Rt

File 830
“homeftom”
music | work foo.ixt
158 320 219 |FeeSpace| B71 Free Space

830

#i4 P BU3

NTFS



Large Directories: B Trees

Search for Hash (foo.txt) = Ox30

Root
Betore | 240 510 730 BB0
Child Poirer ! !
Chisd : ! Child
Belore | 58 121 180 | 240 780 | 841 930 | 980
Chils Painber I B B P h :
Leat - - . . Leaf
Hash | 15 30 44 58
Estry Pointer S
Hash Nember
M . . foo. txt | music work | code bin test
Fie Nember | B30 158 ar 320 219 3 o114 324

NTFS




MNarms
Fiw Npmier

Large Directories: Layout

File Containing Directory

music | work Root | Chid | Leaf | Leaf | Chid
| 320 | 219 | i i
Drectary Endries | B+Trea Nodes

NTFS




NTFS Features

Journaling (logging) for quick recovery

Individual lossless file compression and sparse files
Symbolic links and hard links

Unicode Filenames with accompanying collation table
Random and sequential access

Able to extend (i.e., add disks) to a volume.
Fragmentation

An obscure feature (?) to handle legacy apps that used short
8.3 (Eight Dot Three) names.

Access Control Lists

Alternate Data Streams

NTFS



