
CSE 451: Operating Systems
Winter 2024

Module 17
File Systems

Gary Kimura

High Level View
Application Program

I/O (programming interface)

I/O (File Systems)
block I/O
LBN (Logical Block Number)

I/O (device interface)

HW Devices

Slow – Fast HDD
Read/Write – Read only – Write only SSD
Byte or block I/O
Polling – Interrupt
DMA

Where File Systems Fit In

• The File System interacts with storage by reading/writing
blocks (sectors) on a per volume or single disk basis.

• A computer can have multiple volumes each formatted with a
different file system. For example. C: might be FAT and D:
might be NTFS

• Any interaction between C: and D: is typically above the level
of the file system.

Main Points

• Programming Interface

• Naming. What the typical programmer sees are Files
and Directories

• Basic operations

• On-disk Structure

• First general design issues and then a look at
Microsoft’s FAT file system, Unix, and NTFS.

• Journaling and Recovery

File System mission

• The concept of a file system is simple
• the implementation of the abstraction for secondary storage

• abstraction = files
• logical organization of files into directories

• the directory hierarchy
• sharing of data between processes, people and machines

• access control, consistency, …
• The discussion on file systems often center around two

concepts
• There is the on-disk structure (i.e., how is the data persistently stored

on secondary storage)
• There is the software component that manages the storage and

communicates with the user to store and retrieve data (hopefully
without any loss of information)

Files

• A file is a collection of data with some properties
• contents, size, owner, last read/write time, protection …

• Files may also have types
• Some understood by file system

• device, directory, symbolic link
• Some understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …
• Type can be encoded in the file’s name or contents

• Windows encodes type in name (and contents)
• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

• Old Mac OS stored the name of the creating program along with the
file

• Unix does both as well
• in content via magic numbers or initial characters (e.g., #!)

Programming Interface

• The usual APIs plus maybe a few surprises

• Open, close, read, write, …

• Files and Directories, the object we play with

• Finding and Enumerating entries in a directory

• Watching for changes

• How do we delete a file?

• Renaming or moving files

• Sequential access versus random access. Who remembers the
last access point?

• Shared opens and files locks

Basic operations

Windows

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix

• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)

File access methods

• Some file systems provide different access methods that
specify ways the application will access data
• sequential access

• read bytes one at a time, in order
• direct access

• random access given a block/byte #
• record access

• file is array of fixed- or variable-sized records
• indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from direct
access?
• what might the File System do differently in these cases?

Directories

• Directories provide:
• a way for users to organize their files
• a convenient file name space for both user and File System

• Most file systems support multi-level directories
• naming hierarchies (c:\, c:\DocumentsAndSettings,

c:\DocumentsAndSettings\User, …)
• Most file systems support the notion of current directory

• absolute names: fully-qualified starting from root of File System
• C:\> cd c:\Windows\System32

• relative names: specified with respect to current directory
• C:\> c:\Windows\System32 (absolute)
• C:\Windows\System32> cd Drivers
• (relative, equivalent to cd c:\Windows\System32\Drivers)

Directory internals

• A directory is typically just a file that happens to contain
special metadata

• directory = list of (name of file, file attributes)
• attributes include such things as:

• size, protection, location on disk, creation time, access time, …
• the directory list can be unordered (effectively random)

• when you type “ls” or “dir /on” , the command sorts the results
for you.

• some file systems organize the directory file as a BTree, giving a
“natural” ordering

• What case to use for sort?
• What about international issues?

Back to some of the more unexpected functions

• Finding and Enumerating entries in a directory

• Watching for changes

• How do we delete a file?

• Renaming or moving files. What if someone else has the file
open?

• Shared opens and files locks

• Tunnelling, version control and files attributes

A deeper look into File Systems

• Design Constraints and options
• On-Disk structure

File System Design Constraints

• For small files:
– Small blocks for storage efficiency

– Files used together should be stored together (is this a holdover from
HDD?)

• For large files:
– Contiguous allocation for sequential access (another holdover?)

– Efficient lookup for random access

• May not know at file creation
– Whether file will become small or large

File System Design

• Data structures
– Directories: file name -> file metadata

• Store directories as files

– File metadata: how to find file data blocks

– Free map: list of free disk blocks

• How do we organize these data structures?
– HDD have non-uniform performance that differs from SSD

Design Challenges

• Where to store the file’s data?
– Most often within a block(s) aka cluster(s)
– Disk is divided into equal sized blocks, numbered from 0 to N.

• Index structure
– How do we locate the blocks of a file? Using block numbers

• Index granularity
– What block size do we use? Often a multiple of the disk sector size

• Free space
– How do we find unused blocks on disk? Often a bitmap, but other options are

available
• Locality

– How do we preserve spatial locality? An HDD issue, fragmentation is tied into
this.

• Reliability
– What if machine crashes in middle of a file system op?

File System Design Options

* Really a collection of one or more of logical blocks, commonly referred to as a cluster.

FAT FFS NTFS

Index
structure

Linked list Tree
(fixed, assym)

Tree
(dynamic)

granularity block* block* extent

free space
allocation

FAT array Bitmap
(fixed

location)

Bitmap
(file)

Locality defragmentation Block groups
+ reserve

space

Extents
Best fit
defrag

Microsoft’s File Allocation Table (FAT)

• Introduced in DOS in the early 1980’s

• Linked list index structure
• Simple, easy to implement
• Still widely used (e.g., thumb drives)

• File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

• Allocation granularity (cluster size)

FAT

FAT disk layout

• Reserved Area (Boot sector and FAT)

• Root Directory Area

• Data Region

Dirents: contain: Filename, Attributes, Times (creation, last access, write),
First cluster of file, Filesize, and a few more things

FAT

FAT On-disk structure

FAT

FAT

FAT Dirent
8.3 and long filename

Originally only had
8.3 names

Later extended to
Long Filenames
with backwards

compatibility

(like coughing up
a hairball

FAT
• Evolution:

• Floppy disk and 12-bit FAT
• Hard drives and 16-bit FAT with subdirectories
• Larger drives and 32-bit FAT

• Pros:
– Easy to find free block
– Easy to append to a file

– Easy to delete a file
• Cons:

– Small file access is slow
– Random access is very slow

– Fragmentation
• File blocks for a given file may be scattered
• Files in the same directory may be scattered
• Problem becomes worse as disk is used

FAT

The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational effort in

the early 1960s to develop a dependable timesharing
operating system” – Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

• Although it has been stretched in many directions and
made ugly in the process

• A wonderful study in engineering tradeoffs

Unix

All disks are divided into five parts …

• Boot block
• can boot the system by loading from this block

• Superblock
• specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks
• i-node area

• contains descriptors (i-nodes) for each file on the disk; all
i-nodes are the same size; head of freelist is in the
superblock

• File contents area
• fixed-size blocks; head of freelist is in the superblock

• Swap area
• holds processes that have been swapped out of memory

Unix

So …

• You can attach a disk to a dead system …
• Boot it up …
• Find, create, and modify files …

• because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

• superblock also contains i-node number of root directory

Unix

The flat (i-node) file system

• Each file is known by a number, which is the number of the
i-node
• seriously – 0, 1, 2, 3, etc.!
• why is it called “flat”?

• Files are created empty, and grow when extended through
writes

Unix

The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
• Each entry consists of an i-node number and a file name

i-node number File name

152 .

18 ..

216 my_file

4 another_file

93 oh_my_god

144 a_directory

• It’s as simple as that!
Unix

The “block list” portion of the i-node (Unix Version 7)

• Points to blocks in the file contents area
• Must be able to represent very small and very large files. How?
• Each inode contains 13 block pointers

• first 10 are “direct pointers” (pointers to 512B blocks of file
data)

• then, single, double, and triple indirect pointers

0

1

10

11

12

…

…

…

…

…

… …

Unix

Protection

• Objects: individual files
• Principals: owner/groups/everyone
• Actions: read/write/execute

• This is pretty simple and rigid, but it has proven to be about
what we can handle!

Unix

File system consistency

• Both i-nodes and file blocks are cached in memory
• The “sync” command forces memory-resident disk information

to be written to disk
• system does a sync every few seconds

• A crash or power failure between sync’s can leave an
inconsistent disk

• You could reduce the frequency of problems by reducing
caching or via write-through, but performance would suffer
big-time

Unix

Consistency of the Flat file system

• Is each block accounted for?
• Belongs to precisely one file or is on free list
• What to do if in multiple files?

• Mark-and-sweep garbage collection of disk space
• Start with bitmap (one bit per block) of zeros
• For every inode, walk allocation tree setting bits
• Walk free list setting bits
• Bits that are one along the way?
• Bits that are zero at the end?

Unix

Consistency of the directory structure

• Verify that directories form a tree
• Start with vector of counters, one per inode, set to zero
• Perform tree walk of directories, adjusting counters on every

name reference
• At end, counters must equal link count

• What do you do when they don’t?

Unix

Journaling File Systems

• Became popular ~2002, but date to early 80’s
• There are several options that differ in their details

• Ntfs (Windows), Ext3 (Linux), ReiserFS (Linux), XFS (Irix), JFS
(Solaris)

• Basic idea
• update metadata, or all data, transactionally

• “all or nothing”
• Failure atomicity

• if a crash occurs, you may lose a bit of work, but the disk will
be in a consistent state
• more precisely, you will be able to quickly get it to a

consistent state by using the transaction log/journal –
rather than scanning every disk block and checking sanity
conditions

Journaling File Systems

Why are journaling file systems so popular?

• In any file system buffering is necessary for performance
• But suppose a crash occurs during a file creation:

• Allocate a free inode
• Point directory entry at the new inode

• In general, after a crash the disk data structures may be in an
inconsistent state
• metadata updated but data not
• data updated but metadata not
• either or both partially updated

• fsck (i-check, d-check) are very slow
• must touch every block
• worse as disks get larger!

Journaling File Systems

Where is the Data?
• In the file systems we have seen already, the data is in two

places:
• On disk
• In in-memory caches

• The caches are crucial to performance, but also the source of
the potential “corruption on crash” problem

• The basic idea of the solution:
• Always leave “home copy” of data in a consistent state
• Make updates persistent by writing them to a sequential

(chronological) journal partition/file
• At your leisure, push the updates (in order) to the home

copies and reclaim the journal space
• Or, make sure log is written before updates

Journaling File Systems

• Undo/Redo log
• Log: an append-only file containing log records

• <start t>
• transaction t has begun

• <t,x,v>
• transaction t has updated block x and its new value is v

• Can log block “diffs” instead of full blocks
• Can log operations instead of data (operations must

be idempotent and undoable)
• <commit t>

• transaction t has committed – updates will survive a
crash

• Committing involves writing the records – the home data
needn’t be updated at this time

Journaling File Systems

If a crash occurs

• Open the log and parse
• <start> <commit> => committed transactions
• <start> no <commit> => uncommitted transactions

• Redo committed transactions
• Re-execute updates from all committed transactions
• Aside: note that update (write) is idempotent: can be done

any positive number of times with the same result.
• Undo uncommitted transactions

• Undo updates from all uncommitted transactions
• Write “compensating log records” to avoid work in case

we crash during the undo phase

Journaling File Systems

Managing the Log Space

• A cleaner thread walks the log in order, updating the home
locations (on disk, not the cache!) of updates in each
transaction
• Note that idempotence is important here – may crash

while cleaning is going on
• Once a transaction has been reflected to the home blocks, it

can be deleted from the log

Journaling File Systems

Impact on performance

• The log is a big contiguous write
• very efficient, but it IS another I/O

• And you do fewer scattered synchronous writes
• very costly in terms of performance

• So journaling file systems can actually improve performance
(but not in a busy system!)

• As well as making recovery very efficient

Journaling File Systems

NTFS

• Developed for Windows NT in the early 1990’s

• Master File Table
– Flexible 1KB storage for metadata and data

• Extents
– Block pointers cover runs of blocks

– Similar approach in linux (ext4)

– File create can provide hint as to size of file

• Journalling for reliability
• A basic underlying design principle: Everything on the disk is

represented as a file and accessible through the usual file
operations (read, write, etc.)

NTFS

NTFS disk layout

NTFS

NTFS Small File

NTFS

NTFS Medium-Sized File

NTFS

NTFS Indirect Block

NTFS

NTFS

First few MFT Records

$MFT
$MFTMirr
$LogFile
$Volume
$AttrDef
. (root directory)
$Bitmap
$Boot
$BadClus
$Secure
$UpCase

NTFS

Directories Are Files

NTFS

Recursive Filename Lookup

NTFS

Directory Layout

• Directory stored as a file
• Linear search to find filename (small directories)

NTFS

Large Directories: B Trees

NTFS

Large Directories: Layout

NTFS

NTFS Features

• Journaling (logging) for quick recovery
• Individual lossless file compression and sparse files
• Symbolic links and hard links
• Unicode Filenames with accompanying collation table
• Random and sequential access
• Able to extend (i.e., add disks) to a volume.
• Fragmentation
• An obscure feature (?) to handle legacy apps that used short

8.3 (Eight Dot Three) names.
• Access Control Lists
• Alternate Data Streams

NTFS

